Comparison of 2nd and 4th Order Discretizations for Multigrid Poisson Solvers

نویسندگان

  • M. M. Gupta
  • J. Kouatchou
  • J. Zhang
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Second and Fourth Order Discretizations for Multigrid Poisson Solvers

We combine a compact high-order diierence approximation with multigrid V-cycle algorithm to solve the two dimensional Poisson equation with Dirichlet boundary conditions. This scheme, along with several diierent orderings of grid space and projection operators, is compared with the ve-point formula to show the dramatic improvement in computed accuracy, on serial and vector machines.

متن کامل

Solving the Fluid Pressure Poisson Equation Using Multigrid - Evaluation and Improvements

In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored...

متن کامل

FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube

From molecular dynamics and quantum chemistry, to plasma physics and computational astrophysics, Poisson solvers in the unit cube are used in many applications in computational science and engineering. In this work, we benchmark and discuss the performance of the scalable methods for the Poisson problem which are used widely in practice: the Fast Fourier Transform (FFT), the Fast Multipole Meth...

متن کامل

Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems

We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic mu...

متن کامل

Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

Multigrid algorithms are developed for systems arising from high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The algorithms are based on coupling both pand h-multigrid (ph-multigrid) methods which are used in non-linear or linear forms, and either directly as solvers or as preconditioners to a Newton-Krylov method. The perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995